PROBLEM
Resonant power converters are widely used in various applications including DC distribution systems, bi-directional DC-DC converters, wireless power transfer systems, and underwater telecommunication and observation systems due to their soft-switching ability, low electromagnetic interference, and high-power density. In underwater systems, a constant DC current is preferred over DC voltage distribution for its robustness against cable impedance and faults. However, the input voltage range and voltage ratings within a current-fed converter may be high, increasing cost, and component voltage ratings impact a range of output voltages.

SOLUTION
This new converter establishes a constant output voltage for a range-varying load, and addresses the operational challenge with a constant-current input source to achieve a minimum-power operation limit. The converter reduces the overall component stress and operates with multiple output voltage converters fed from a constant current source, enabling a wider set of output voltage functionalities. The technology converts current into voltage through an inductive power transfer topology with a zero-volt switch, achieving a constant DC current input and load-independent output voltage with fewer components in the circuit, suitable for low-current and high-voltage systems, operating at high switching frequency to achieve high efficiency with low electromagnetic interference. The converter is capable of bidirectional operation.

BENEFITS
The circuit behaves as a programmable output power source. The load impedance or resistance can be modified to the situation, accommodating a varying power source with a constant output voltage. The system is directly integrable with constant DC current distributions for underwater applications and vehicle charging applications.

CONTACT
Questions about this technology including licensing availability can be directed to:

ALAN EDWARDS
Manager
Technology Transfer Services
(435) 797-2328
alan.edwards@usu.edu

INVENTORS
TARAK SAHA, PH.D.
Electrical and Computer Engineering

ANINDYA BAGCHI, PH.D.
Electrical and Computer Engineering

REGAN ZANE, PH.D.
Electrical and Computer Engineering

HONGJIE WANG, PH.D.
Electrical and Computer Engineering

DEVELOPMENT STAGE
TRL 4

LICENSING
Available for License

PATENT STATUS
Issued Patent No. 10,938,313

WEBSITE
https://aspire.usu.edu/