Title: Improvements in In-Motion Wireless Charging Systems for Electric Vehicles

Name: Reebal Nimri
Mentor: Dr. Abhilash Kamineni

Electric vehicles (EV) are becoming a cleaner, more popular mode of transportation. However, more convenient charging solutions are required for higher EV adoption. One possible solution is wireless charging of in-motion EVs, but that technology still needs to mature before realization. This research explores a novel charging technology for an in-road wireless charging pad that may increase the feasibility of in-motion wireless EV charging. The research is based on a commonly used pad design. The charging pad on-board the vehicle operates without direct input from the in-road pad, which simplifies current EV wireless charging designs. When the vehicle is not near an in-road pad, negligible energy is used by the vehicle’s charging pad, increasing overall efficiency. As the vehicle approaches an in-road pad, the electromagnetic effects of the approaching, enabled vehicle pad activate the in-road pad. An innovative scheme is used to synchronize the in-road pad to the vehicle pad, achieving maximum power transfer. Protections against system instability have also been included. The control scheme only observes the electromagnetic effects of the approaching vehicle, eliminating the need for any radio frequency communication between the vehicle and road and between subsequent in-road pads. The result is a modular, secure, reliable, and simple design. The design improvements can be an enabling technology to in-motion wireless EV charging and broader EV adoption, which can result in lower emissions in populated areas.